
Software Engineering

Lecture 12 – Requirements
Engineering

© 2015-19 Dr. Florian Echtler
Bauhaus-Universität Weimar

 <florian.echtler@uni-weimar.de>

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

mailto:florian.echtler@uni-weimar.de
http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 2

Requirements Engineering

● Also called software specification
● Define functionality of/constrains on the software product
● Sub-activities:

– Feasibility study
– Requirements elicitation/analysis
– Requirements specification
– Requirements validation

http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 3

Software Specification Process
Image source (FU): Sommerville, Software Engineering, Chapter 2

Requirements
elicitation and

analysis

Requirements
specification

Requirements
validation

System
models

User and system
requirements

Requirements
document

Feasibility
study

Feasibility
report

http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 4

Feasibility study

● Short, focused evaluation
● 3 major questions:

– Does the system contribute to the overall objectives of the
organization?

– Can the system be implemented within schedule and budget (*)
using current technology?

– Can the system be integrated with other systems that are used?

(*) definite answer probably impossible

http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 5

Feasibility study: example

● Augmented reality project at BMW
● Goal: track welding gun and

display bolt positions to operator
● Analysis of design space for

sensor/marker placement

Image source (FU): Echtler et al., “The Intelligent Welding Gun”, 2003

http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 6

Requirements elicitation

● User doesn't really know …
– what they actually need
– what is possible

● Developer doesn't really know …
– the problem
– the context

http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 7

Requirements elicitation (2)

● Important first steps for developers:
– Identify stakeholders (users, managers, admins, …)
– Learn about fundamental context properties

● Iterative process:
– Discovery (e.g. by interviews, ethnography, …)
– Classification & organization (e.g. through model architecture)
– Prioritization & negotiation (conflict resolution between

stakeholders)
– Specification & documentation

http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 8

Example: stakeholders for an ATM?

● Bank customers
● Bank managers
● Counter staff
● Database administrators
● Security managers
● Representatives of other banks
● Marketing department
● Hardware and software maintenance engineers
● Banking regulators

http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 9

Requirements discovery

● Interviews with stakeholders
– Closed/Open (with/without predefined questions)
– Hybrid (semi-structured) most common→
– Not suitable for domain requirements (too familiar for

interviewee, not familiar for developer)
● Ethnography

– Observational technique, immersion in the work
environment/context in which the product is used

– Helps to discover implicit requirements, constraints and
social/environmental details

http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 10

Requirements classification

● E.g. using viewpoints
● Represent perspectives of different stakeholders

– Interactor viewpoint – persons/systems which interact directly
with the product, e.g. users

– Indirect viewpoint – no direct interaction but influence on
requirements, e.g. managers

– Domain viewpoint – internal regulations, legal requirements etc.

http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 11

Requirements classification (2)

● Functional requirements
– What should the system (not) do?

● Non-functional requirements
– Reliability, response time, security, ease of use …
– May lead to additional functional requirements

● Domain requirements (variant of NFR)
– Regulations, laws etc.
– May lead to additional (non-)functional requirements

http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 12

Requirements classification (3)
Image source (FU): Sommerville, Software Engineering, Chapter 4

Non-functional
requirements

Product Organizational External

EthicalRegulatory

Safety/security

Legislative

Accounting

DevelopmentOperationalEnvironmental

SecurityDependabilityEfficiency

Usability

Performance Space

http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 13

Requirements description

● “It is natural for a system developer to interpret an ambiguous
requirement in a way that simplifies its implementation.
Often, however, this is not what the customer wants.”

 → path of least resistance

 → requirements must be as precise as possible

Source (FU): Sommerville, Software Engineering, Chapter 4

http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 14

Types of requirements description

● Sentences in natural language (+ diagrams)
– user/system requirements document (“Lasten-/Pflichtenheft”)

● Structured language – natural language using structured
template

● Design description language/graphical notations, e.g. UML &
related notations

● Mathematical specifications

http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 15

Natural language RD

● Example: insulin pump
● Format: 1 sentence requirement + rationale
● Mandatory “shall”, optional “should”→ →
● “The system shall measure the blood sugar and deliver insulin,

if required, every 10 minutes. (Changes in blood sugar are
relatively slow so more frequent measurement is unnecessary;
less frequent measurement could lead to unnecessarily high
sugar levels.)”

● Still room for interpretation …

Source (FU): Sommerville, Software Engineering, Chapter 4

http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 16

Structured language RD
Attribute Description

Function Compute insulin dose: safe sugar level.

Description Computes the dose of insulin to be delivered when the current measured sugar level is
in the safe zone between 3 and 7 units.

Inputs Current sugar reading (r2), the previous two readings (r0 and r1).

Source Current sugar reading from sensor, other readings from memory.

Outputs CompDose – the dose in insulin to be delivered.

Destination Main control loop.

Action CompDose is zero if the sugar level is stable or falling or if the level is increasing but
the rate of increase is decreasing. If the level is increasing and the rate of increase is
increasing, then CompDose is computed by dividing the difference between the
current sugar level and the previous level by 4 and rounding the result. If the result is
rounded to zero then CompDose is set to the minimum dose that can be delivered.

Requirements Two previous readings so that the rate of change of sugar level can be computed.

Pre-condition The insulin reservoir contains at least the maximum allowed single dose of insulin.

Post-condition r0 is replaced by r1, then r1 is replaced by r2

Side effects None.

Source (FU): Sommerville, Software Engineering, Chapter 4

http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 17

Mathematical RD
Source (FU): Sommerville, Software Engineering, Chapter 4

Condition Action

Sugar level falling (r2 < r1) CompDose := 0

Sugar level stable (r2 = r1) CompDose := 0

Sugar level increasing (r2 > r1) and
rate of increase decreasing
((r2 – r1) < (r1 - r0))

CompDose := 0

Sugar level increasing (r2 > r1) and
rate of increase stable or increasing
((r2 – r1) >= (r1 - r0))

CompDose := round((r2 – r1) / 4)
if CompDose = 0:
 CompDose := MinimumDose

http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 18

Requirements Validation

● Check document for …
– Validity/Completeness – are all requirements correctly met?
– Consistency – are there conflicts between requirements?
– Realism – can requirements be implemented with given resources?
– Verifiability – can requirements be checked for completion?

http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 19

Requirements Validation (2)

● Check through …
– Reviews – systematic manual analysis, preferably by external

reviewers
– Prototyping – create prototypes conforming to current

requirements, review with stakeholders
– Test-case generation – create test cases or test procedures for

requirements

http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 20

Requirements Validation (3)

● Testing non-functional requirements:
– Speed: transactions/second, response time, …
– Ease of use: training time, size of manual, …
– Reliability: uptime, mean time between failures, …
– Robustness: time to restart after failure, probability of data

corruption, …

http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 21

Relation to software processes

● In “traditional” processes
– RE mostly done at the start
– multiple cycles, but finishes with req. document

● In agile processes
– interleaved with development
– feasibility study probably still initial step

● Hybrid approach: e.g. RE interleaved with prototyping

http://creativecommons.org/licenses/by-nc-sa/4.0/

16/01/21 Software Engineering - © 2015 Dr. Florian Echtler, Bauhaus-Universität Weimar 22

Questions/Comments?

http://creativecommons.org/licenses/by-nc-sa/4.0/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

